
ISSUES IN PRACTICAL APPLICATION OF
AN ADAPTIVE INTERFACE

Beth Meyer, K. C. Burgess Yakemovic, Michael Harris

NCR HunIan Interface Technology Center

500 Tech Parkway, NW

Atlanta, GA 30313

(404) 853-2959

Beth. Meye@AtlantaGA. ncr.conl

ABSTRACT

The authors have been developing a prototype sys[em for

installation in an operationat business environment.

During the development, a number of issues have been

encountered. These include:

● constraints arising from placing prototypes in

operational environments

. lack of guidelines for selecting types of adaptation

● difficulty determining adaptation criteria

● difficulty obtaining necessary data from users
● lack of guidelines for making information display

decisions

● problems in testing ‘real world’ interfaces

These issues are not readily solved with more

sophisticated adaptation algorithms; rather. they point

out the need for CO1Iect ing more information from

attempts to bring intelligent interfaces to complex

business environments.

KEYWORDS: Adaptive interfaces. prototypes,

commercial applications. development issues

INTRODUCTION

Since early 1991, the authors have been devc]oping a

prototype of an adaptive assistance system for relail

point-of-sale operation. This prototype will he tested in

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a fee

and/or specific permission.

e 1992 ACM 0-89791 -557 -7/92 /0012 /0251 . ..$1 .50

an operational business

undergoing laboratory

developing an adaptive

environment; it is

usability testing,

currently

While

interface to be installed in a

business environment, we have encountered many

practical issues which appear to apply to a broad class of

potential applications for adaptive interfaces.

CONSTRAINTS OF OPERATIONAL PROTOTYPING

One of the most important processes in designing and

evaluating a new interface is testing a prototype with real

users performing real tasks. The necessity of doing this

for a business-related interface can constrain prototype

development. Two of the important constraint issues are

negative transfer and completeness.

Preventing Negative Transfer
If an early prototype will be tested temporarily in an

operational situation. people who are being paid for

doing real work (rather than for performing tests) cannot

afford to be slowed down either when lhe prototype is

installed or when it IS removed. This is especially mue

for highly procedural domains, where many actions and

motions may become automatic with practice.

(II1c way to address this problcm is to specify that all

existing procedures still bc used to accomplish the user’s

god Is. The prototype (nc w SYSMI1) may differ from the

exlstmg system in the information that it provides to the

user. but not in the way It rcqu ircs users to accomplish

their existing godls. In such a prototype. it may be

reasonable to add new actions for accomplishing new

goals, such as deciding whether an adaptation should
take place. These achons must be ones that have no

harmful effects in the cx isting system. so that users

rcturnin~ to the existing system are not at’fcclcd,

This requirement restricts [he ways in which the

interface can adapt. For example, adapting lhe

cotllllltlIlic:ititlll s{ylc (perhaps S]viny novices a menu

I1:+V]::1[ion il[)d 0 pcr[s 21C(xll llliill~-hilSCd S)’SICill) lllay

Intelligent User Interfaces ’93 251

require the user to either Icalm a ncw way of performing

tasks at the beginning of the protolype trial. unlearn the

new methcds at the end of the trial, or both. Similarly,

dynamic task allocation could cause problems upon the

removal of the prototype, The tasks the system would

take upon itself during high workload conditions would

be more difficult to do under lhe same conditions

without the system.

Completeness of Prototype lmplementations
When developing a prototype, one can often finish the

job witlf~n cost and time constraints by limiting the range

of tasks that the prototype supports. Originally, assisting

retail sales seemed to be a small problem; task analysis

results showed this assumption to be false. Hence,

assisting every possible task with the prototype was not

feasible,

However, installation in an operational environment

requires either complete coverage of all tasks or an

invisible transition between places where the prototype

implementation is complete and places where it is not.

In our case, an acceptable transition was possible. Had it

not been possible, our prototype implementation would

have had to be expanded to support the complete

interface, Of the possible adaptive architectures, few

have been tested on complete problems that are of a size

similar to that of the retail point-of-sale problem.

SPECIFYING THE TYPE OF ADAPTATION

One of the fundamental steps in designing an adaptive
intefi-ace is determining what aspects of the system will

change in response to changing conditions. The

following are some of the ways in which the system may

adapt [1,2]:

● Task allocation or partitioning -- the system itself

perfomls the complete task or part of It.

● Interface transformation -- the systcm adapts to

make the [ask easlcr by changin~ the

cmnmunicatlon style and the content and form oi

d lsplaycd information.

● Functional ity -- the system adapts the functions

avallatic to each user.

. User -- the systcm can help the user to adapt by

dctcrm ining apparent problcm areas and providing

mtclllgcnl tutoring [or thcm.

Bccausc O(the constr,lints mentioned previously. the

primary means ot’ a{iap[ation used by our prololypc was

thal LJI chan:]ng the illlormalion (iispiaycci. 11 ail types

:Irc cqua[iy lcasihlc. 11]s not clear winch Iypcs t)l

adaptation are the most benclic]al in which cases. This

would be usefui information for developers. since

adaptation of all types at once could cause enough

simultaneous change to confuse the user.

SPECIFYING THE CRITERIA FOR ADAPTATION

Another step in developing an adaptive interface is

determining the conditions that should cause the system

to adapt. For example. the system might adapt to any of

the following characteristics of the user, task, or

environment [1]:

● User experience with the task itself

● Previous user experience (e.g., familiarity with GUI

or command-line interfaces)

. User aptitudes (e.g., visual acuity or spatial

reasoning ability)

. User preferences

● User demographics (e.g.. job title or education)

. Task complexity

● Task frequency

● Probable workload

● Physical conditions (e.g., ambient noise level)

For each criterion used. there must bc at least one source

of data for tile systcm. In Lhc absence of a ted for

quickly making radical chanqcs to adaptation algorithms

and data stores. selecting the most important conditions

for adaptation and the most accurate and tractable

measurements of thcm is critical. Since a variable may

be mlsscd in the mltial anuiysis. or not consldcrcd useful

initially bu[shown to ix important m later tcstmg. it is

ncccssary to have arcilltccl ums which suppoil extension.

OBTAINING DATA TO DRIVE ADAPTATION

Even if the most important and useful thcoretica] bases

for adaptation are sclwtcd. obtaining the acluai data to

measure these var]ablcs is cxh-eme]y challenging m an

real business appiica[]on.

.Mnc ot’ Ihc easicsl data m coltcct N s[ablc USCI-

information. such as y)b title :ind c(iti~iltioi). This (iata

oniy requires stmlc pr(wisloi] Ior ot’ll Inc inltiali~.ali(m and
mainlcnancc. (1[wOul[i Ix unacccplabic (c) rcqulrc users

(c>provide a Ccxl)piclc hack~l’cwll(i to Iilc Syslclll W’lICI]

252 Intelligent User Interfaces ’93

they need 10 use IL to pelform a transaction.) Howcvcl-.

this data by ltsclf cannot support appropriate adaptation

to the changing needs of a single user. and the more

useful data)salsomore difficult to collect.

Workload Data

Suppose that the system is designed to provide more

assistance during times of greater workload. In a very

general,’way. workload can be estimated using such
factors,”as time of day, season, and current staffing.

However, the primary factors are the number and

difficulty of tasks that the user is perfomling

simultaneous y. In the retail environment, secondary

tasks that increase workload may include bagging

merchandise. conversing with customers, or using the

telephone -- activities not readily detected by the system.

Speed Data

One of the primary measures of expertise used in human

perfom~ance studies is speed. An adaptive system could

measure how quickly a user accomplishes tasks and

subtasks. and then adjust the level of assistance to

conform with an expertise level commensurate with that

speed. However, in the retail environment, operator

speed is affected by many unrelated factors, such as:

● Amount and type of merchandise in a transaction

. Customer actions (talking to operator)

● System speed and hardware conditions (an operator

will necessarily be much slower if the scanner is no~

working correctly)

Both speed and workload data, then, are significantly

affected by factors external to the system. This type oi

issue aifecls any adaptive interface desjgned for an

environment in which other people or unrelated systems

ma> Interact with the user.

Accuracy Data

Accuracy may tw a more useiul way of measuring user

cxperlise and evaluating user actions, pallcularly smcc

the lnwlligcncc oi an adaptive interface may be more

cficctlve m prcvcntmg common emors than in spcedmg

up correct pcriormance. To delerminc whether the user’s

actions arc correct. the systcm must know whal the user
IS [rymg Ic> Lie. imw best to aciucve tlus goal. and

whether IIl]s :(MI is even appropriate in the iirst place.

obtain ing t i~is mt’ormalion proved to bc one oi’ the most

l’und.~nlcn(:il and inh-ac{abic chailcngcs in develop]]): <x]r

ali.ilxlvc Inlcl”fxc.

For example. (me O(the more common errors observed

with our poln~-oi-sa]e system was the omission of a

special step that was necessary for sales made to store

employees. U nfonunate] y, that step was the ~ action

that distlngulshcd an employee sale from any other sale.

Hence, if the user forgot the step, the syslem would not

he able to detemline that the sale was to an employee

and would not be abie to detect the error.

As we analyzed the task ot_ operating the point-of-sale

temlinal, we were sur-fmsed to find that many actions

could be correct or incorrect, depending on conditions

that the system would not be able to detect. Not even an

aborted transaction is always the sign of an error -- an

operator may have to abort a correct transaction because

the customer had a change of heart.

When we buiit and tested the adaptive interface, we

found that the incompleteness of the available data made

the system’s goai inferences a sometimes shaky basis for

aiding and adaptation. During usability testing, a user

might wish to pert_orm a cash return but accidentally

enter the code ior a cash sale. We would then watch as

the adaptive intert”ace dutifully assisted the user in

performing a cash sale, never able to determine that this

was not what the user actually wanted to do.

Tile problem o(incorrect goal inference is hardly limited

to the retail environment; it is a risk in any task that

does not rcqu n-c the user to make a complete and

absolulciy comxt goal stalement al the outset. (Few

tasks, if any. have such a requirement.) It seems that a

iertile area ior research and development would be

means ior’ users to caslly communicate their goals

dn-eclly to the systcm at any time, in much the same way

they would to a human colleague. Without such certain

knowledge oi tile user’s goal, there is always the risk of

assuming cm-rcct pcrfolnlance when an error has been

made. or vtcc-versa.

IDENTIFYING THE USER

There is another (undamcnta] issue related to collecting

user data. For the system to adapt based on what it

already knows about lhc current user, it must (irst know

who the cun-cn(user]s. This is less trivial than it might

appear. in rc(ail c!nvironmcnls, idcntifica{ion numbers

arc rout inei y suppi Icd. However. users somciimcs enter

idcntiiication numbers other than their own when

pcrlorming ccrlaln tasks. (This has [o do will]
calculating colllmissi(xls.) In (Iti)cr environments. there
may not hc a spcclf]c iorm Oi idcntificaticm. or the

dcnt)i’lcatl(m suppilcd mav apply to more than onc user.

For cx:lmplc, .in ATM may nc>t be able to distinguish
IWIWWI) (I1c u~crs ,JI :1~(}]nl hank account.

intelligent User Interfaces ’93 253

In other instances, the identification may be entered late

in a task, so that the adaptive interface cannot use its

knowledge of the user for much of the task. One answer

to that problem is to change the task so that users always

identify themselves at the very beginning of each

session. However, in practical applications, the size and

nature of the installed base of users may effectively

prevent a change like this.

SPECIFYING INFORMATION PROVIDED TO THE
USER

For a system that adapts primarily in terms of

information displayed, the designer must determine how

the users’ information needs change as they gain

experience and as other factors change. This

information comes from a thorough and detailed task

analysis.

Many task analysis methods identify all individual steps

and their relationships within complete tasks, often using

graphical representations such as flow charts. Such a

detailed level of analysis can ensure that the interface is

responsive to users’ individual actions. However. this

microscopic view may obscure the importance of the

overall goal of the user, particularly when many steps are

common to different overall tasks. System designers

may miss opportunities to guide the user toward the

overall goal. Therefore, it is important to reexamine the

detailed analysis by reviewing several complete tasks

from beginning to end.

At the same time. it is useful that adaptation be possible

at the level of individual steps. We found that adapting

only at the task level reduced the effectiveness of aiding.

If a user made a mistake in a single step of a task, the

system would provide extra assistance on all steps of the

task, most of it unnecessary.

Some of the reasons for users’ information needs to

change may not be readily detected by lhc system. For

o.ample, the adaptive syslun might present a brand-new

user with a motion video clip showing how to perform a

group of steps in a transaction. Alter the novice

ptrforms the sleps correctly a few limes. the systcm may
eliminate the video image and simply prompl the user Lo

conlp]cle Lhe Sleps. .%veral transacljons later. the user

might need more information abou L onc of LhCSC SLCpS.

The systcm then must be able Lo distinguish bcLwcen a

llccd for more int’ormat ion ahou 1 lhc conlplcLc group of
s[cps and a need for different int’omati(m about an

individual step.

EVALUATING THE ADAPTIVE INTERFACE

In order to test whether an adaptive interface is truly

adding to the usability of a product, the test must

replicate the conditions under which the interface is

designed to adapt. In other words, if the interface is

designed to provide maximum assistance to novices and

then provide less help as the user gains experience, the

test subjects should actually move beyond the novice

level in the course of the test. The more complex the

system, the harder it is to encompass this level of

training and practice in a laboratory test.

Other conditions of adaptation are also difficult to

simulate in the laboratory. For example, an adaptive

system might be designed to provide more help to

experts when they have made a certain number of errors

with a single type of task. Testing of existing experts is

usually feasible, but ensuring that they have trouble with

something may be another matter entirely.

For these reasons, testing in an operational environment

over an extended period of time may be necessary to

prove the value of an adaptive interface.

SUMMARY

Based on our experience with building an adaptive

interface for installation in a business environment, it

appears there are a number of issues that are not

completely addressed in the literature. These issues are

not readily solved with more sophisticated adaptation

algorithms; rather, they point out the need for collecting

more information by bringing intcll igcnt interfaces to

complex real-world environments.

ACKNOWLEDGMENTS

Our thanks to Haila Darcy, Paula Mossaides. C1arkson

Jones. Dick Henneman. Mike Donncllan. and Ed

Anderson for Lheir assistance with Lh]s projecL

REFERENCES

1. Malinowski, U.. Kuhmc. T.. Dictcrich. H.. anti

Schneider-Hufschnlidt, M. (In press,) A Mxonomy
of adaptive user interfaces. In Prccccdmgs Of HC1

’92. York. 15-18 Sep. 1992. Cambricigc University

Press.

2. Rouse. W.B. Adaptive aiding for llulllalticc>ll~l>u(cr

control. Human Factors. 30.4 (August 198S). 43 I -

443.

254 Intelligent User Interfaces ’93

