ISSUES IN PRACTICAL APPLICATION OF
AN ADAPTIVE INTERFACE

Beth Meyer, K. C. Burgess Yakemovic, Michael Harris

NCR Human Interface Technology Center
500 Tech Parkway, NW
Atlanta, GA 30313
(404) 853-2959
Beth.Meyer@ AtlantaGA.ncr.com

ABSTRACT

The authors have been developing a prototype system for
installation in an operational business environment.
During the development, a number of issues have been
encountered. These include:

e constraints arising from placing prototypes in
operational environments

lack of guidelines for selecting types of adaptation
difficulty determining adaptation criteria
difficulty obtaining necessary data from users

lack of guidelines for making information display
decisions

¢ problems in testing 'real world' interfaces

These issues are not readily solved with more
sophisticated adaptation algorithms; rather. they point
out the need for collecting more information from
attempts to bring telligent interfaces to complex
business environments.

KEYWORDS: Adaptive interfaces. prototypes.
commercial applications, development issues

INTRODUCTION

Since early 1991, the authors have becn developing a
prototype of an adaptive assistance system for retail
point-of-sale operation. This prototype will be tested in

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1992 ACM 0-89791-557-7/92/0012/0251...$1.50

an operational business environment; it is currently
undergoing laboratory usability testing. While
developing an adaptive interface to be installed in a
business environment, we have encountered many
practical issues which appear to apply to a broad class of
potential applications for adaptive interfaces.

CONSTRAINTS OF OPERATIONAL PROTOTYPING
One of the most important processes in designing and
evaluating a new interface is testing a prototype with real
users performing real tasks. The necessity of doing this
for a business-related interface can constrain prototype
development. Two of the important constraint issues are
negative transfer and completeness.

Preventing Negative Transfer

If an carly prototype will be tested temporarily in an
opcrational situation. people who are being paid for
doing real work (rather than for performing tests) cannot
afford to be slowed down either when the prototype is
installed or when it 1s removed. This is especially true
for highly procedural domains, where many actions and
motions may become automatic with practice.

Onc way to address this problem is to specify that all
existing procedures still be used to accomplish the user's
goals. The prototype (new system) may difter from the
existing system in the information that it provides to the
user, but not in the way 1t requires users 1o accomplish
their exisung goals. In such a prototype. it may be
reasonable to add new actions for accomplishing new
goals, such as deciding whether an adaptation should
take place. These actions must be ones that have no
harmful effects in the existing system. so that users
returning to the existing system are not atfected.

This requirement restricts the ways in which the
interface can adapt. For cxample, adapting the
communication style (perhaps giving novices a menu
navigation and experts a command-based system) may

Intelligent User Interfaces ‘93

251

require the user to cither leam a new way of performing
tasks at the beginning of the prototype trial. unlearn the
new methods at the end of the trial, or both. Similarly,
dynamic task allocation could cause problems upon the
removal of the prototype. The tasks the system would
take upon itself during high workload conditions would
be more difficult to do under the same conditions
without the system.

Completeness of Prototype Implementations

When dgveloping a prototype, one can often finish the
job within cost and time constraints by limiting the range
of tasks that the prototype supports. Originally, assisting
retail sales seemed to be a small problem; task analysis
results showed this assumption to be false. Hence,
assisting every possible task with the prototype was not
feasible.

However, installation in an operational environment
requires either complete coverage of all tasks or an
invisible transition between places where the prototype
implementation is complete and places where it is not.
In our case. an acceptable transition was possible. Had it
not been possible, our prototype implementation would
have had to be expanded to support the complete
interface. Of the possible adaptive architectures, .few
have been tested on complete problems that are of a size
similar to that of the retail point-of-sale problem.

SPECIFYING THE TYPE OF ADAPTATION

One of the fundamental steps in designing an adaptive
interface is determining what aspects of the system will
change in response to changing conditions. The
following are some of the ways in which the system may
adapt [1.2]:

e Task allocation or partitioning -- the system itself
performs the complete task or part of 1t

e Interface transformation -- the system adapts to
make the task easier by changing the
communication style and the content and form of
disptayed information.

¢ Functionality -- the system adapts the functions
available to each user.

e Uscr -- the system can help the user to adapt by
determining apparcnt problem arcas and providing
mtelligent witormg for them.

Because of the constraints mentioned previously, the
primary mcans of adaptation used by our prototype was
that of changing the information displayed. It all types
arc cqually feasible. 1t 1s not clear wiinch types of

adaptation are the most beneticial in which cases. This
would be useful information for developers. since
adaptation of all types at once could cause enough
simultaneous change 1o confuse the user.

SPECIFYING THE CRITERIA FOR ADAPTATION
Another step in developing an adaptive interface is
determining the conditions that should cause the system
to adapt. For example, the system might adapt to any of
the following characteristics of the user, task, or
environment [1]:

o User experience with the task itself

e Previous user experience (e.g., familiarity with GUI
or command-line interfaces)

e User aptitudes (e.g., visual acuity or spatial
reasoning ability)

e User preferences

e User demographics (e.g.. job title or education)
o Task complexity

e Task frequency

e Probable workload

* Physical conditions (e.g.. ambient noisc level)

For each criterion used. therc must be at least one source
of data for the system. In the absence of a tool for
quickly making radical changes to adaptation algorithms
and data stores. selecting the most important conditions
for adaptation and the most accuratc and tractable
measurements of them is critical. Since a variable may
be mussed in the initial analysis, or not considercd uscful
initially but shown to be important in later testing, it is
necessary to have architectures which support extension.

OBTAINING DATA TO DRIVE ADAPTATION

Even if the most important and useful theoretical bases
for adaptation are sclected. obtaining the actual data to
measure these variables is extremely challenging m an
real business application.

Some of the easiest data o collect 18 stable user
information. such as job title and cducation. This data
only requires some provision for of fhine imtialization and
mainicnance. (It would be anacceptable to require users
to provide a complete background to the system when

252

Intelligent User Interfaces ‘93

thev need Lo use 1t to perform a transaction.) However,
this data by itsclf cannot support appropriate adaptation
to the changing needs of a single user. and the more
useful data 1s also more difficult to collect.

Workload Data

Suppose that the system is designed to provide more
assistance during times of greater workload. In a very
gencral 'way. workload can be estimated using such
factors as time of day, season, and current staffing.
However, the primary factors are the number and
difficulty of tasks that the wuser is performing
simultaneously. In the retail environment, secondary
tasks that mcrease workload may include bagging
merchandise. conversing with customers, or using the
telephone -- activities not readily detected by the system.

Speed Data

One of the primary measures of expertise used in human
performance studies is speed. An adaptive system could
measure how quickly a user accomplishes tasks and
subtasks. and then adjust the level of assistance Lo
conform with an expertise level commensurate with that
speed. However, in the retail environment, operator
speed is affected by many unrelated factors, such as:

* Amount and type of merchandise in a transaction
+ Customer actions (talking to operator)

e System specd and hardware conditions (an operator
will necessarily be much slower if the scanner is not
working correctly)

Both speed and workload data, then, are significantly
affected by factors external to the system. This type of
issuc affects any adaptive interface designed for an
environment in which other people or unrelated systems
may nteract with the user.

Accuracy Data

Accuracy may be a more useful way of measuring user
expertise and evaluating user actions, particularly since
the mtelligence of an adaptive interface may be more
ctfective mn prevenung common errors than in speeding
up correct performance. To determine whether the user's
actions arc correct. the system must know what the user
18 rving 1o do. how best to achieve this goal, and
whether tus goal is even appropriate in the first place.
Obtaming this m{ormation proved to be one of the most
fundamental and mtractable challenges in developimg our
adapuive mterface.

For example. one of the more common errors observed
with our pomt-of-sale system was the omission of a
special step that was necessary for sales made to store
employees. Unfortunately, that step was the only action
that distinguished an employee sale from any other sale.
Hence, if the user forgot the step, the system would not
be able to determine that the sale was to an employee
and would not be able to detect the error.

As we analyzed the task of operating the point-of-sale
terminal, we were surprised to find that many actions
could be correct or incorrect, depending on conditions
that the system would not be able to detect. Not even an
aborted transaction is always the sign of an error -- an
operator may have to abort a correct transaction because
the customer had a change of heart.

When we built and tested the adaptive interface, we
found that the incompleteness of the available data made
the system's goal inferences a sometimes shaky basis for
aiding and adaptation. During usability testing, a user
might wish to perform a cash return but accidentally
enter the code for a cash sale. We would then watch as
the adaptive interface dutifully assisted the user in
performing a cash sale, never able to determine that this
was not what the user actually wanted to do.

The problem of incorrect goal inference is hardly limited
to the retail environment; 1t is a risk in any task that
does not require the uscr to make a complete and
absolutely correct goal statement at the outset. (Few
tasks. if any. have such a requirement.) It seems that a
fertile area for rescarch and development would be
means for users to casily communicate their goals
direcly to the system at any time, in much the same way
they would to a human colleague. Without such certain
knowledge of the user's goal, there is always the risk of
assuming correct performance when an crror has becen
made. or vice-versa.

IDENTIFYING THE USER

There is another fundamental issue related Lo collecting
user data. For the system to adapt based on what it
already knows about the current user, it must first know
who the current user 18, This is less trivial than it might
appear. In rctail environments, identification numbers
are routinely supphed. However, users sometimes center
wdentification numbers other than their own when
performing certain tasks, (This has to do with
calculating commissions.) In other environments, there
may not be a specific form of identification. or the
identification supphed may apply to more than onc uscr.
For example. an ATM may not be able to distimguish
between the users of a jomt bank account.

Intelligent User Interfaces ‘93

253

In other instances, the identification may be entered latc
in a task, so that the adaptive interface cannot use its
knowledge of the user for much of the task. One answer
to that problem is to change the task so that users always
identify themselves at the very beginning of each
session. However, in practical applications, the size and
nature of the installed base of users may effectively
prevent a change like this.

SPECIFYING INFORMATION PROVIDED TO THE
USER

For a system that adapts primarily in terms of
information displayed, the designer must determine how
the users' information needs change as they gain
experience and as other factors change. This
information comes from a thorough and detailed task
analysis.

Many task analysis methods identify all individual steps
and their relationships within complete tasks, often using
graphical representations such as flow charts. Such a
detailed level of analysis can ensure that the interface is
responsive to users' individual actions. However, this
microscopic view may obscure the importance of the
overall goal of the user, particularly when many steps are
common to different overall tasks. System designers
may miss opportunities to guide the user toward the
overall goal. Therefore, it is important to reexamine the
detailed analysis by reviewing several complete tasks
from beginning to end.

At the same time, it is useful that adaptation be possible
at the level of individual steps. We found that adapting
only at the task level reduced the effectiveness of aiding.
If a user made a mistake in a single step of a task, the
system would provide extra assistance on all steps of the
task, most of it unnecessary.

Some of the reasons for users' information needs to
change may not be rcadily detected by the system. For
example, the adaptive system might present a brand-new
uscr with a motion video clip showing how to perform a
group of steps in a transaction. Alter thc novice
performs the steps correctly a few times. the system may
climinate the vidco image and simply prompt the user to
complete the steps. Scveral transactions later. the user
might need more information about one of these steps.
The system then must be able to distinguish between a
nced for more information about the complete group of
steps and a need for different information about an
mdividual step.

EVALUATING THE ADAPTIVE INTERFACE

In order to test whether an adaptive interface is truly
adding to the usability of a product, the test must
replicate the conditions under which the interface is
designed to adapt. In other words, if the interface is
designed to provide maximum assistance to novices and
then provide less help as the user gains experience, the
test subjects should actually move beyond the novice
level in the course of the test. The more complex the
system, the harder it is to encompass this level of
training and practice in a laboratory test.

Other conditions of adaptation are also difficult to
simulate in the laboratory. For example, an adaptive
system might be designed to provide more help to
experts when they have made a certain number of errors
with a single type of task. Testing of existing experts is
usually feasible, but ensuring that they have trouble with
something may be another matter entirely.

For these reasons, testing in an operational environment
over an extended period of time may be necessary to
prove the value of an adaptive interface.

SUMMARY

Based on our experience with building an adaptive
interface for installation in a business environment, it
appears there are a number of issues that are not
completely addressed in the literature. These issues are
not readily solved with more sophisticated adaptation
algorithms; rather, they point out the need for collecting
more information by bringing intclligent interfaces to
complex real-world environments.

ACKNOWLEDGMENTS

Our thanks to Haila Darcy, Paula Mossaides. Clarkson
Jones. Dick Henneman. Mike Donnellan, and Ed
Anderson for their assistance with this project.

REFERENCES

1. Malinowski, U.. Kihme, T., Dicterich, H.. and
Schneider-Hufschmidt, M. (In press) A taaonomy
of adaptive user interfaces. In Procecdings of HCI
'92. York, 15-18 Sep. 1992, Cambridge University
Press.

2. Rouse. W.B. Adaptive aiding for humaw/computer
control. Human Factors. 30. 4 (August 193%), 431-
443,

254

Intelligent User Interfaces ‘93

